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1. Motivation

Blue LEDs based on
strikingly

high

quantum

for long-wavelength devices.

It was proposed that the separation of
electron and hole wavefunctions cause
decrease of the oscillator strength and
lower efficiency.

Remarkably, wide InGaN QWs can solve

this problem.
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3. LEDs with wide InGaN QWs

InGaN have a
efficiency.
However, the efficiency significantly drops
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2. Role of excited states in wide InGaN QWs

Without excitation the wavefunction
overlap in the wide QW is extremely low.
This prevents carrier recombination.
Under excitation the carriers cannot
initially recombine  which leads to
screening of the built-in electric field.

Efficient transitions through excited states
emerge after screening of the built-in field.
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QW structures were grown by plasma-assisted molecular beam epitaxy.
At low excitation power we observe a drop of PL intensity, however, as the excitation
power increases, the efficient transitions through excited states start to appear.
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Thin QW:

single peak

screening of QCSE

emission
with Dblue-shift due to

Intermediate QW:

multiple peaks indicating
excited states, large blue-
shift at low currents
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Wide QW:
stable transitions through
excited states, built-in field
entirely screened
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4. Towards long wavelength devices
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For-long wavelength emitters indium

content
increased,
piezoelectric field.

leading

to

in the QWs needs to be

higher

Surprisingly, wide QWSs can be used
with an extremely high wavefunction
overlap between excited states.

Optical gain measurements performed
on laser diodes reveal an increase of

differential gain for LDs with wide QWs.

Indeed, a greater

improvement of
differential gain is observed for the

long-wavelength device.

» Wide InGaN quantum wells can efficiently emit light despite the large piezoelectric

field.
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» The built-in field gets screened fast due to low overlap between carriers on ground

states.

» Optical transitions through excited states with high wavefunction overlap emerge
after screening of the built-in field.

» Wide InGaN quantum wells might become the solution to the , green gap” problem.
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